Reaction Time Data Analysis

Published

April 25, 2023

Load packages

Code
library(tidyverse)
library(knitr, include.only = 'kable')
library(pwr)
library(rcompanion) # such interesting documentation 
library(lsr) 
library(car)
library(broom)
library(afex) 
library(emmeans)
library(cowplot, include.only = c('plot_grid', 'ggdraw'))
library(ggplotify, include.only= 'as.grob')
library(TOSTER)
library(performance)
library(wesanderson)
library(effectsize, include.only = 'cohens_d')

Load data

Code
reactionTime <- read_csv("reactionTime_preprocess.csv", 
                                    show_col_types = FALSE) |> 
    mutate(agent = case_when(
    str_detect(stimulus, "Human") ~ "Human", 
    str_detect(stimulus, "Milo") ~ "Humanoid", 
    str_detect(stimulus, "Theo") ~ "Robotic Arm", 
  )) |> 
  mutate(motion_type = case_when(
    str_detect(stimulus, "Bio") ~ "Biological",
    str_detect(stimulus, "Nonbio") ~ "Nonbiological", 
  )) |>
  mutate(outcome_type = case_when(
    str_detect(stimulus, "Correct") ~ "Correct", 
    str_detect(stimulus, "Spill") ~ "Error")) 

summary_statistics <- read_csv("reactionTime_summary_statistics.csv", 
                               show_col_types = FALSE)
plotting <- read_csv("plottingReactionTime.csv", 
                     show_col_types = FALSE)
# summary_statistics_error <- summary_statistics |> filter(outcome_type == "Error")

Split violin

Code
# https://stackoverflow.com/questions/35717353/split-violin-plot-with-ggplot2
# trying the solution with the nudge

GeomSplitViolin <- ggplot2::ggproto(
    "GeomSplitViolin",
    ggplot2::GeomViolin,
    draw_group = function(self,
                          data,
                          ...,
                          # add the nudge here
                          nudge = 0,
                          draw_quantiles = NULL) {
        data <- transform(data,
                          xminv = x - violinwidth * (x - xmin),
                          xmaxv = x + violinwidth * (xmax - x))
        grp <- data[1, "group"]
        newdata <- plyr::arrange(transform(data,
                                           x = if (grp %% 2 == 1) xminv else xmaxv),
                                 if (grp %% 2 == 1) y else -y)
        newdata <- rbind(newdata[1, ],
                         newdata,
                         newdata[nrow(newdata), ],
                         newdata[1, ])
        newdata[c(1, nrow(newdata)-1, nrow(newdata)), "x"] <- round(newdata[1, "x"])

        # now nudge them apart
        newdata$x <- ifelse(newdata$group %% 2 == 1,
                            newdata$x - nudge,
                            newdata$x + nudge)

        if (length(draw_quantiles) > 0 & !scales::zero_range(range(data$y))) {

            stopifnot(all(draw_quantiles >= 0), all(draw_quantiles <= 1))

            quantiles <- ggplot2:::create_quantile_segment_frame(data,
                                                             draw_quantiles)
            aesthetics <- data[rep(1, nrow(quantiles)),
                               setdiff(names(data), c("x", "y")),
                               drop = FALSE]
            aesthetics$alpha <- rep(1, nrow(quantiles))
            both <- cbind(quantiles, aesthetics)
            quantile_grob <- ggplot2::GeomPath$draw_panel(both, ...)
            ggplot2:::ggname("geom_split_violin",
                             grid::grobTree(ggplot2::GeomPolygon$draw_panel(newdata, ...),
                                            quantile_grob))
        }
    else {
            ggplot2:::ggname("geom_split_violin",
                             ggplot2::GeomPolygon$draw_panel(newdata, ...))
        }
    }
)

geom_split_violin <- function(mapping = NULL,
                              data = NULL,
                              stat = "ydensity",
                              position = "identity",
                              # nudge param here
                              nudge = 0.01,
                              ...,
                              draw_quantiles = NULL,
                              trim = FALSE,
                              scale = "area",
                              na.rm = TRUE,
                              show.legend = NA,
                              inherit.aes = TRUE) {

    ggplot2::layer(data = data,
                   mapping = mapping,
                   stat = stat,
                   geom = GeomSplitViolin,
                   position = position,
                   show.legend = show.legend,
                   inherit.aes = inherit.aes,
                   check.aes = TRUE,
                   params = list(trim = trim,
                                 scale = scale,
                                 # don't forget the nudge
                                 nudge = nudge,
                                 draw_quantiles = draw_quantiles,
                                 na.rm = na.rm,
                                 ...))
}
Code
Plot_bio <- plotting |>
  mutate(agent = case_when(
    str_detect(stimulus, "Human") ~ "Human", 
    str_detect(stimulus, "Milo") ~ "Humanoid", 
    str_detect(stimulus, "Theo") ~ "Robotic Arm", 
  )) |> 
  mutate(motion_type = case_when(
    str_detect(stimulus, "Bio") ~ "Biological",
    str_detect(stimulus, "Nonbio") ~ "Nonbiological", 
  )) |>
  mutate(outcome_type = case_when(
    str_detect(stimulus, "Correct") ~ "Correct", 
    str_detect(stimulus, "Spill") ~ "Error")) |> filter(motion_type == "Biological") 

Plot_bio$title <- "Biological Motion"

Plot_bio |> 
  ggplot(aes(x = fct_rev(agent), y = mean_of_3_rounds, fill = outcome_type, alpha = .9)) + geom_split_violin() + 
    geom_boxplot(width = .15, position = position_dodge(.3), na.rm = TRUE) +
    stat_summary(fun = "mean", geom = "point", size = 2,
               position = position_dodge(width = 0.3), na.rm = TRUE) +
  stat_summary(fun.data = "mean_se", geom = "errorbar", width = .1,
               position = position_dodge(width = 0.3), na.rm = TRUE) +
    stat_summary(fun.data = "median_se", geom = "crossbar", width = .1,
               position = position_dodge(width = 0.3), na.rm = TRUE) +
  scale_y_continuous(limits = c(-500, 1000), name = "Response time\nin advance of outcome (ms)", 
                     expand = c(0.05, 0.05, .05, .05)) + 
  scale_x_discrete(name = "Agent") +
  scale_fill_manual(values = c("lightblue", "#A0522D"))+
  theme_linedraw() + guides(alpha = "none") + 
  guides(fill = guide_legend(title="Outcome")) +
    theme(
        plot.margin = margin(1,1,1,1, "cm"), 
        strip.text.x = element_text(size = 14, face="bold"), 
#        plot.title = element_text(hjust = 0.6, face = "bold", size = 16), 
        axis.title.y = element_text(size = 14, vjust = +2), 
        axis.title.x = element_text(vjust = -2, size = 14), 
        axis.text=element_text(size=12)) + facet_wrap(~title)

Code
Plot_nonbio <- plotting |>
  mutate(agent = case_when(
    str_detect(stimulus, "Human") ~ "Human", 
    str_detect(stimulus, "Milo") ~ "Humanoid", 
    str_detect(stimulus, "Theo") ~ "Robotic Arm", 
  )) |> 
  mutate(motion_type = case_when(
    str_detect(stimulus, "Bio") ~ "Biological",
    str_detect(stimulus, "Nonbio") ~ "Nonbiological", 
  )) |>
  mutate(outcome_type = case_when(
    str_detect(stimulus, "Correct") ~ "Correct", 
    str_detect(stimulus, "Spill") ~ "Error")) |> filter(motion_type == "Nonbiological") 

Plot_nonbio$title <- "Nonbiological Motion"

Plot_nonbio |> 
  ggplot(aes(x = fct_rev(agent), y = mean_of_3_rounds, fill = outcome_type, alpha = .9)) + 
  geom_split_violin() +
    geom_boxplot(width = .15, 
               position = position_dodge(.3), fatten = NULL, na.rm = TRUE) +
  stat_summary(fun = "mean", geom = "point", na.rm = TRUE, size = 2,
               position = position_dodge(width = 0.3)) +
  stat_summary(fun.data = "mean_se", geom = "errorbar", na.rm = TRUE, width = .1,
               position = position_dodge(width = 0.3)) +
    stat_summary(fun.data = "mean_se", geom = "errorbar", width = .1,
               position = position_dodge(width = 0.3), na.rm = TRUE) +
  scale_fill_manual(values = c("lightblue", "#A0522D")) +
#  scale_fill_manual(values = wes_palette("Royal1", n=2))+
  theme_linedraw()+ 
        theme(
        plot.margin = margin(1,1,1,1, "cm"), 
        axis.title.y = element_text(size = 14), 
        axis.title.x = element_text(vjust = -4, size = 14), 
        axis.text = element_text(size=12), 
        strip.text = element_text(size = 14, face = "bold")) +
  scale_y_continuous(limits = c(-500, 1000), name = "Response time\nin advance of outcome (ms)", 
                     expand = c(0.05, 0.05, .05, .05)) + 
  scale_x_discrete(name = "Agent") +
  guides(alpha = "none") +
  guides(fill = guide_legend(title="Outcome")) + facet_wrap(~title)

Code
"%||%" <- function(a, b) {
  if (!is.null(a)) a else b
}

geom_half_violin <- function(mapping = NULL, data = NULL, stat = "ydensity",
                             position = "dodge", trim = TRUE, scale = "area",
                             show.legend = NA, inherit.aes = TRUE, ...) {
  layer(
    data = data,
    mapping = mapping,
    stat = stat,
    geom = GeomHalfViolin,
    position = position,
    show.legend = show.legend,
    inherit.aes = inherit.aes,
    params = list(
      trim = trim,
      scale = scale,
      ...
    )
  )
}

GeomHalfViolin <-
  ggproto("Violinist", Geom,
          setup_data = function(data, params) {
            data$width <- data$width %||%
              params$width %||% (resolution(data$x, FALSE) * 0.9)
            
            # ymin, ymax, xmin, and xmax define the bounding rectangle for each group
            data %>%
              group_by(group) %>%
              mutate(ymin = min(y),
                     ymax = max(y),
                     xmin = x,
                     xmax = x + width / 2)
            
          },
          
          draw_group = function(data, panel_scales, coord) {
            # Find the points for the line to go all the way around
            data <- transform(data, xminv = x,
                              xmaxv = x + violinwidth * (xmax - x))
            
            # Make sure it's sorted properly to draw the outline
            newdata <- rbind(plyr::arrange(transform(data, x = xminv), y),
                             plyr::arrange(transform(data, x = xmaxv), -y))
            
            # Close the polygon: set first and last point the same
            # Needed for coord_polar and such
            newdata <- rbind(newdata, newdata[1,])
            
            ggplot2:::ggname("geom_flat_violin", GeomPolygon$draw_panel(newdata, panel_scales, coord))
          },
          
          draw_key = draw_key_polygon,
          
          default_aes = aes(weight = 1, colour = "grey20", fill = "white", size = 0.5,
                            alpha = NA, linetype = "solid"),
          
          required_aes = c("x", "y")
  )
Code
Plot_bio |> 
 ggplot(aes(x = stimulus, y = -(mean_of_3_rounds), fill = outcome_type)) + 
  geom_half_violin(trim=FALSE, na.rm = TRUE, width = 1, 
                   position =position_nudge(x = -.15, y = 0)) + 
  geom_boxplot(fill = "white", width = .17, alpha = 0.5, fatten = NULL, 
               position = position_dodge(.15)
               ) +
  stat_summary(fun = "mean", geom = "point") +
  scale_fill_manual(values = c("lightblue", "#A0522D")) +
  stat_summary(fun.data = "mean_se", geom = "errorbar", width = .1) +
  coord_flip() + 
  guides(alpha = "none") +
  guides(fill = guide_legend(title="Outcome")) + 
  geom_hline(yintercept = 0, size = 1, color = "#303030") + 
  theme_linedraw() + 
  scale_x_discrete(name = "Conditions", 
                   labels = c("Human", "Humanoid", "Robotic Arm"), 
                   expand = c(0.15, .05, .35, .05)) +
   scale_y_continuous(name = "Response time before seeing outcome (ms)", 
                      expand = c(0.05, 0.05, .05, .05), n.breaks = 7,                       
                      labels = c("1000\nbefore\npouring", "750", "500", "250", "0\noutcome\nshown", "-250", "-500"),
                      limits = c(-1000, 500)) +
      theme(
        plot.margin = margin(1,1,1,1, "cm"), 
        axis.title.y = element_text(size = 14), 
        axis.title.x = element_text(vjust = -4, size = 14), 
        axis.text = element_text(size=12), 
        strip.text = element_text(size = 14, face = "bold"), 
        panel.spacing = unit(2, "lines"), legend.position = "none"
        ) + facet_wrap(~ outcome_type, scales = "free", nrow = 2)

Code
Plot_nonbio |> 
 ggplot(aes(x = stimulus, y = -(mean_of_3_rounds), fill = outcome_type)) + 
  geom_half_violin(trim=FALSE, na.rm = TRUE, width = 1, 
                   position = position_nudge(x = -.11, y = 0)) + 
  geom_boxplot(fill = "white", width = .17,fatten = 2, na.rm = T, alpha = 0.6) +
  stat_summary(fun = "mean", geom = "point", na.rm = T) +
  scale_fill_manual(values = c("lightblue", "#A0522D")) +
  stat_summary(fun.data = "mean_se", geom = "errorbar", width = .1, na.rm = T) +
  coord_flip() + 
  guides(alpha = "none") +
  guides(fill = guide_legend(title="Outcome")) + 
  geom_hline(yintercept = 0, size = 1, color = "#303030") + 
  theme_linedraw() + 
  scale_x_discrete(name = "Conditions", 
                   labels = c("Human", "Humanoid", "Robotic Arm"), 
                  expand = c(.15, .05, .35, .05)) +
   scale_y_continuous(name = "Response time before seeing outcome (ms)", 
                      expand = c(.05, .05, .05, .05), n.breaks = 7,       
                      labels = c("1000\nbefore\npouring", "750", "500", "250", "0\noutcome\nshown", "-250", "-500"),
                      limits = c(-1000, 500)) +
      theme(
        plot.margin = margin(1,.5,1,1, "cm"), 
        axis.title.y = element_text(size = 14), 
        axis.title.x = element_text(vjust = -4, size = 14), 
        axis.text = element_text(size=12), 
        strip.text = element_text(size = 14, face = "bold"), 
        panel.spacing = unit(2, "lines"), legend.position = "none"
        ) +facet_wrap(~outcome_type, scales = "free", nrow=2)

Code
Plot_bio |> 
 ggplot(aes(x = agent, y = -(mean_of_3_rounds), fill = outcome_type, alpha = .8)) + 
  geom_half_violin(position = position_nudge(x = .25, y = 0), 
                   trim=FALSE, na.rm = TRUE, width = .8) + 
  geom_boxplot(width = .3, alpha = 0.5, fatten = NULL, na.rm = T) +
  stat_summary(fun = "mean", geom = "point",
               position = position_dodge(width = 0.25), na.rm = T) +
    scale_fill_manual(values = c("lightblue", "#A0522D")) +
  stat_summary(fun.data = "mean_se", geom = "errorbar", width = .1,
               position = position_dodge(width = 0.3), na.rm = T) +
  coord_flip() + guides(alpha = "none") +
  guides(fill = guide_legend(title="Outcome")) + 
  geom_hline(yintercept = 0, size = 1) + 
  scale_y_continuous() +
  theme_linedraw() + 
  scale_x_discrete(name = "Agent", 
#                   labels = c("Human Error", "Human Correct", "Humanoid Error", "Humanoid Correct", "Robotic Arm Error", "Robotic Arm Correct"), 
                   expand = c(.05, .05, .05, .05)) +
   scale_y_continuous(name = "Response time before seeing outcome (ms)", 
                      expand = c(.05, .05, .05, .05),
                      labels = c("1000", "500", "0", "500")
                      ) +
      theme(
        plot.margin = margin(1,1,1,1, "cm"), 
        axis.title.y = element_text(size = 14), 
        axis.title.x = element_text(vjust = -3, size = 14), 
        axis.text=element_text(size=12))

Code
plot_error_only <- plotting |>
  mutate(agent = case_when(
    str_detect(stimulus, "Human") ~ "Human", 
    str_detect(stimulus, "Milo") ~ "Humanoid", 
    str_detect(stimulus, "Theo") ~ "Robotic Arm", 
  )) |> 
  mutate(motion_type = case_when(
    str_detect(stimulus, "Bio") ~ "Biological",
    str_detect(stimulus, "Nonbio") ~ "Nonbiological", 
  )) |>
  mutate(outcome_type = case_when(
    str_detect(stimulus, "Correct") ~ "Correct", 
    str_detect(stimulus, "Spill") ~ "Error")) |> 
  filter(outcome_type == "Error")
  

plot_error_only |> 
  ggplot(aes(x = stimulus, y = -(mean_of_3_rounds), fill = motion_type)) + 
  geom_half_violin(trim=FALSE, na.rm = TRUE, width = 1, 
                   position = position_nudge(x = -.11, y = 0)) + 
  geom_boxplot(fill = "white", width = .15,fatten = 2, na.rm = T, alpha = 0.6) +
  stat_summary(fun = "mean", geom = "point", na.rm = T) +
 scale_fill_manual(values = c("darkgreen", "brown")) +
  stat_summary(fun.data = "mean_se", geom = "errorbar", width = .1, na.rm = T) +
  coord_flip() + 
  guides(alpha = "none") +
  guides(fill = guide_legend(title="Outcome")) + 
  geom_hline(yintercept = 0, size = 1, color = "#303030") + 
  theme_linedraw() + 
  scale_x_discrete(name = "Conditions", 
                   labels = c("Human", "Humanoid", "Robotic Arm"), 
                  expand = c(.15, .05, .35, .05)) +
  scale_y_continuous(name = "Response time before seeing outcome (ms)", 
                      expand = c(.05, .05, .05, .05), n.breaks = 7,       
                      labels = c("1000\nbefore\npouring", "750", "500", "250", "0\noutcome\nshown", "-250", "-500"),
                      limits = c(-1000, 500)) +
      theme(
        plot.margin = margin(1,.5,1,1, "cm"), 
        axis.title.y = element_text(size = 14), 
        axis.title.x = element_text(vjust = -4, size = 14), 
        axis.text = element_text(size=12), 
        strip.text = element_text(size = 14, face = "bold"), 
        panel.spacing = unit(2, "lines"), 
        legend.position = "none"
        ) + facet_wrap(~motion_type, scales = "free", nrow=2)

Interaction plots

Subset by Agent

Code
iplot_arm <- 
  summary_statistics |> 
  filter(agent == "Robotic Arm") |>
ggplot(aes(x = motion_type, y = mean, group = outcome_type, 
           shape = outcome_type, color = outcome_type)) +
  geom_point(size = 3) +
  geom_line(aes(linetype = outcome_type))+
  scale_x_discrete(name = "Motion Type")+
  scale_y_continuous(name = "Response time \nbefore outcome is shown (ms)", limits=c(0, 500)) +
  theme_classic() + scale_colour_brewer(palette = "Set1") + 
  scale_colour_brewer(palette = "Set1", direction = -1) +
  theme(legend.position="none", 
        plot.margin = margin(1,1,1,1, "cm"), 
        plot.title = element_text(hjust = 0.6, face = "bold", size = 16), 
        axis.title.y = element_text(vjust = +3, size = 14),
    axis.title.x = element_text(vjust = -1.5, size = 14), 
    axis.text =element_text(size=14)) + 
  ggtitle("Robotic Arm")

iplot_humanoid <- summary_statistics |> 
  filter(agent == "Humanoid") |>
ggplot(aes(x = motion_type, y = mean, group = outcome_type, 
           shape = outcome_type, color = outcome_type)) +
  geom_point(size = 3) +
  geom_line(aes(linetype = outcome_type))+
  scale_x_discrete(name = "Motion Type") + 
   scale_y_continuous(limits=c(0, 500)) +
  theme_classic() + scale_colour_brewer(palette = "Set1", direction = -1) +
  theme(legend.position="none", 
        plot.margin = margin(1,1,1,1, "cm"), 
        plot.title = element_text(hjust = 0.6, face = "bold", size = 16), 
        axis.title.y = element_blank(), 
        axis.title.x = element_text(vjust = -1.5, size = 14), 
        axis.text=element_text(size=14)) + 
  ggtitle("Humanoid")

iplot_human <- summary_statistics |> 
  filter(agent == "Human") |>
ggplot(aes(x = motion_type, y = mean, group = outcome_type, 
           shape = outcome_type, color = outcome_type)) +
  geom_point(size = 3) +
  geom_line(aes(linetype = outcome_type))+
  scale_x_discrete(name = "Motion Type")+
 scale_y_continuous(limits=c(0, 500)) +
  theme_classic() + scale_colour_brewer(palette = "Set1", direction = -1) +
  theme(legend.position = c(0.9, 0.9),
        legend.title = element_blank(), 
        plot.margin = margin(1,1,1,1, "cm"), 
        plot.title = element_text(hjust = 0.5, face = "bold", size = 16), 
        axis.title.y = element_blank(), 
        axis.title.x = element_text(vjust = -1, size = 14), 
        axis.text = element_text(size=14), 
        legend.text = element_text(size = 14)) + 
  ggtitle("Human")
iplot_humanoid

Code
# use ggplotify::as.grob to convert plots into grobs first
iplot_arm <- as.grob(iplot_arm)
iplot_humanoid <- as.grob(iplot_humanoid)
iplot_human <- as.grob(iplot_human)
Code
draw_label_theme <- function(label, theme = NULL, element = "text", ...) {
  if (is.null(theme)) {
    theme <- ggplot2::theme_get()
  }
  if (!element %in% names(theme)) {
    stop("Element must be a valid ggplot theme element name")
  }

  elements <- ggplot2::calc_element(element, theme)

  cowplot::draw_label(label, 
                      fontfamily = elements$family,
                      fontface = elements$face,
                      colour = elements$color,
                      size = elements$size,
                      ...
  )
}

# set titles
iplot_agent_title <- ggdraw() +
  draw_label_theme("Interaction Plots by Agent", 
                   element = "plot.title",
                   x = 0.05, hjust = 0, vjust = 1)
Code
# arrange 3 interaction plots horizontally using cowplot::plot_grid
# remember to provide list() not vector 
plot_grid(plotlist = list(iplot_arm, iplot_humanoid, iplot_human), 
          align = "h", nrow = 1, rel_widths = c(2.2, 2, 2.1))

3x2x2 ANOVA

Code
mod_322 <- aov_car(formula = mean_of_3_rounds~ motion_type * outcome_type * agent + Error(participant/(motion_type * outcome_type * agent)),
              dv = "mean_of_3_rounds", 
              es = "pes", 
              type = 3, 
              include_aov = TRUE, 
              data = reactionTime)

nice(mod_322)
Anova Table (Type 3 tests)

Response: mean_of_3_rounds
                          Effect           df      MSE          F  ges p.value
1                    motion_type        1, 51 29443.17 234.63 *** .271   <.001
2                   outcome_type        1, 51 19395.87  70.44 *** .068   <.001
3                          agent  1.89, 96.57 23892.94     3.70 * .009    .031
4       motion_type:outcome_type        1, 51 22227.70  19.65 *** .023   <.001
5              motion_type:agent  1.94, 98.98 23181.09  84.80 *** .170   <.001
6             outcome_type:agent  1.86, 94.66 19772.50     4.67 * .009    .013
7 motion_type:outcome_type:agent 1.97, 100.55 17599.85       1.28 .002    .281
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

Sphericity correction method: GG 

ANOVA for biological action

3 x 1 repeated measures ANOVA

Code
subset_bio <- reactionTime |> filter(motion_type =="Biological")

mod_bio <- aov_car(formula = mean_of_3_rounds~ outcome_type * agent + Error(participant/(outcome_type * agent)),
              dv = "mean_of_3_rounds", 
              es = "pes", 
              type = 3, 
              include_aov = TRUE, 
              data = subset_bio)

anova(mod_bio)
Anova Table (Type 3 tests)

Response: mean_of_3_rounds
                   num Df den Df   MSE       F      ges    Pr(>F)    
outcome_type       1.0000  51.00 33065 50.6254 0.126902 3.580e-09 ***
agent              1.9180  97.82 26929 34.5154 0.134045 9.043e-12 ***
outcome_type:agent 1.8382  93.75 22858  0.6009 0.002188    0.5369    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
# Anova Table (Type 3 tests)
# 
# Response: mean_of_3_rounds
#                    num Df den Df   MSE       F      ges    Pr(>F)    
# outcome_type       1.0000  51.00 33065 50.6254 0.126902 3.580e-09 ***
# agent              1.9180  97.82 26929 34.5154 0.134045 9.043e-12 ***
# outcome_type:agent 1.8382  93.75 22858  0.6009 0.002188    0.5369    
# ---
# Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

ANOVA for nonbio motion

Code
subset_nonbio <- reactionTime |> filter(motion_type =="Nonbiological") 

mod_nonbio <- aov_car(formula = mean_of_3_rounds~ outcome_type * agent + Error(participant/(outcome_type * agent)),
              dv = "mean_of_3_rounds", 
              es = "pes", 
              type = 3, 
              include_aov = TRUE, 
              data = subset_nonbio)

anova(mod_nonbio)
Anova Table (Type 3 tests)

Response: mean_of_3_rounds
                   num Df den Df     MSE       F      ges    Pr(>F)    
outcome_type       1.0000 51.000  8558.5 15.0734 0.017884 0.0002985 ***
agent              1.8346 93.565 21030.5 57.0182 0.236948 4.101e-16 ***
outcome_type:agent 1.9008 96.942 15456.7  6.4939 0.026225 0.0026538 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
nice(mod_nonbio)
Anova Table (Type 3 tests)

Response: mean_of_3_rounds
              Effect          df      MSE         F  ges p.value
1       outcome_type       1, 51  8558.53 15.07 *** .018   <.001
2              agent 1.83, 93.57 21030.51 57.02 *** .237   <.001
3 outcome_type:agent 1.90, 96.94 15456.72   6.49 ** .026    .003
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1

Sphericity correction method: GG 
Code
# Anova Table (Type 3 tests)
# 
# Response: mean_of_3_rounds
#                    num Df den Df     MSE       F      ges    Pr(>F)    
# outcome_type       1.0000 51.000  8558.5 15.0734 0.017884 0.0002985 ***
# agent              1.8346 93.565 21030.5 57.0182 0.236948 4.101e-16 ***
# outcome_type:agent 1.9008 96.942 15456.7  6.4939 0.026225 0.0026538 ** 
# ---
# Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Check Assumptions for ANOVA

3. Check residuals normal distribution

Code
plotting_reactionTime_bio <- plotting |> 
  filter(motion_type == "Biological")
  
plotting_reactionTime_nonbio <- plotting |> 
  filter(motion_type == "Nonbiological")

# whole model
plot_model <- aov_car(formula = mean_of_3_rounds~ outcome_type * agent + Error(participant/(outcome_type * agent)),
              dv = "mean_of_3_rounds", 
              es = "pes", 
              type = 3, 
              include_aov = TRUE, 
              data = plotting)
#plotting
#qqPlot(plot_model$lm$residuals)
#check_normality(plot_model$lm$residuals)
#plot(check_normality(plot_model), type = "qq")
#shapiro.test(plot_model$lm$residuals)
#   Shapiro-Wilk normality test
# 
# data:  plot_model$lm$residuals
# W = 0.98447, p-value = 0.1386

# bio only
model_bio <- aov_car(formula = mean_of_3_rounds ~ outcome_type * agent + Error(participant/(outcome_type * agent)),
              dv = "mean_of_3_rounds", 
              es = "pes", 
              type = 3, 
              include_aov = TRUE, 
              data = plotting)

# qqPlot(model_bio $lm$residuals)
# check_normality(model_bio $lm$residuals)
# check_sphericity(model_bio )
# plot(check_normality(model_bio ), type = "qq")
# shapiro.test(model_bio $lm$residuals)
#   Shapiro-Wilk normality test
# 
# data:  model_bio $lm$residuals
# W = 0.99477, p-value = 0.6623

summary(model_bio)

Univariate Type III Repeated-Measures ANOVA Assuming Sphericity

                    Sum Sq num Df Error SS den Df F value    Pr(>F)    
(Intercept)        2448931      1   371279      6 39.5756 0.0007513 ***
outcome_type        150870      1    22748      6 39.7935 0.0007404 ***
agent                50584      2    74526     12  4.0725 0.0446777 *  
outcome_type:agent   52289      2   226034     12  1.3880 0.2869107    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


Mauchly Tests for Sphericity

                   Test statistic  p-value
agent                     0.29488 0.047218
outcome_type:agent        0.46774 0.149628


Greenhouse-Geisser and Huynh-Feldt Corrections
 for Departure from Sphericity

                    GG eps Pr(>F[GG])  
agent              0.58647    0.07977 .
outcome_type:agent 0.65263    0.28723  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

                      HF eps Pr(>F[HF])
agent              0.6433063  0.0736056
outcome_type:agent 0.7600888  0.2880767
Code
# nonbio only
plot_nonbio <- aov_car(formula = mean_of_3_rounds ~ outcome_type * agent + Error(participant/(outcome_type * agent)),
              dv = "mean_of_3_rounds", 
              es = "pes", 
              type = 3, 
              include_aov = TRUE, 
              data = plotting)

#qqPlot(plot_nonbio$lm$residuals)
#check_normality(plot_nonbio$lm$residuals)
check_sphericity(plot_nonbio)
Warning: Sphericity violated for: 
 - agent (p = 0.047).
Code
#plot(check_normality(plot_nonbio), type = "qq")
shapiro.test(plot_nonbio$lm$residuals)

    Shapiro-Wilk normality test

data:  plot_nonbio$lm$residuals
W = 0.97524, p-value = 0.4864
Code
#   Shapiro-Wilk normality test
# 
# data:  plot_nonbio$lm$residuals
# W = 0.9776, p-value = 0.01838
summary(plot_nonbio)

Univariate Type III Repeated-Measures ANOVA Assuming Sphericity

                    Sum Sq num Df Error SS den Df F value    Pr(>F)    
(Intercept)        2448931      1   371279      6 39.5756 0.0007513 ***
outcome_type        150870      1    22748      6 39.7935 0.0007404 ***
agent                50584      2    74526     12  4.0725 0.0446777 *  
outcome_type:agent   52289      2   226034     12  1.3880 0.2869107    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1


Mauchly Tests for Sphericity

                   Test statistic  p-value
agent                     0.29488 0.047218
outcome_type:agent        0.46774 0.149628


Greenhouse-Geisser and Huynh-Feldt Corrections
 for Departure from Sphericity

                    GG eps Pr(>F[GG])  
agent              0.58647    0.07977 .
outcome_type:agent 0.65263    0.28723  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

                      HF eps Pr(>F[HF])
agent              0.6433063  0.0736056
outcome_type:agent 0.7600888  0.2880767
Code
# gave up on converting the Mauchly w to chi-squared, cant report a statistic I dont understand
k = 6 #repeated measures
n = 30 
W = 0.865 # De Mauchly's W
d <- 1 -((2*((k - 1)^2)+(k-1)+2)/(6*(k-1)*(n-1)))
Chikwadraat <- -1*(n-1)*d*log(W)
df <- (k*(k-1)/2)-1
pchisq(Chikwadraat, df, lower.tail=FALSE)
[1] 0.9958716

Equivalence

Code
subset_bio_error <- reactionTime |> filter(motion_type == "Biological") |> filter(outcome_type == "Error") |> select(-stimulus)

m_sd_bio_error <- subset_bio_error |> summarise(
  mean = mean(mean_of_3_rounds, na.rm = T),
  median = median(mean_of_3_rounds, na.rm = T), 
  sd = sd(mean_of_3_rounds, na.rm = T)
)
moments::skewness(subset_bio_error$mean_of_3_rounds, na.rm = T)
[1] -0.8352542
Code
moments::kurtosis(subset_bio_error$mean_of_3_rounds, na.rm = T)
[1] 2.797943
Code
mod <- aov_ez(id = "participant", dv = "mean_of_3_rounds", 
              within = "agent", es = "pes", 
              type = 3, include_aov = TRUE,
              data = subset_bio_error)

anova(mod)
Anova Table (Type 3 tests)

Response: mean_of_3_rounds
      num Df den Df   MSE      F     ges    Pr(>F)    
agent 1.9936 101.67 20342 17.061 0.11834 4.209e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
#       num Df den Df   MSE      F     ges    Pr(>F)    
# agent 1.9936 101.67 20342 17.061 0.11834 4.209e-07 ***

equ_ftest(Fstat = 17.061,
          df1 = 1.9936,
          df2 = 101.67,
          eqbound = 0.035)

    Equivalence Test from F-test

data:  Summary Statistics
F = 17.061, df1 = 1.9936, df2 = 101.6700, p-value = 0.9997
95 percent confidence interval:
 0.1096739 0.3714795
sample estimates:
[1] 0.2506788
Code
#   Equivalence Test from F-test
# 
# data:  Summary Statistics
# F = 17.061, df1 = 1.9936, df2 = 101.6700, p-value = 0.9997
# 95 percent confidence interval:
#  0.1096739 0.3714795
# sample estimates:
# [1] 0.2506788

Perform TOST between robots

Code
subset_robots_TOST <- subset_bio_error |> filter(agent != "Human")

# mean and SD of subset_robots
mean_and_SD_robots <- subset_robots_TOST |> group_by(agent) |> 
  summarise(mean = mean(mean_of_3_rounds, na.rm=T), sd = sd(mean_of_3_rounds, na.rm=T))
# actual effect size = Cohen's d = (433.7096 - 438.7734) ⁄ 177.337259 = 0.028555. 

res1a = t_TOST(x = subset(subset_robots_TOST, agent=="Robotic Arm")$mean_of_3_rounds,
               y = subset(subset_robots_TOST, agent=="Humanoid")$mean_of_3_rounds, paired = TRUE,
               eqb = 62, rm_correction = TRUE)
print(res1a)

Paired t-test

The equivalence test was significant, t(51) = 2.1, p = 0.02
The null hypothesis test was non-significant, t(51) = -0.187p = 0.85
NHST: don't reject null significance hypothesis that the effect is equal to zero 
TOST: reject null equivalence hypothesis

TOST Results 
                 t df p.value
t-test     -0.1866 51   0.853
TOST Lower  2.0984 51   0.020
TOST Upper -2.4717 51   0.008

Effect Sizes 
               Estimate      SE               C.I. Conf. Level
Raw            -5.06386 27.1328 [-50.519, 40.3913]         0.9
Hedges's g(rm) -0.02803  0.1556  [-0.2527, 0.1969]         0.9
Note: SMD confidence intervals are an approximation. See vignette("SMD_calcs").
Code
describe(res1a)
[1] "Using the Paired t-test, a null hypothesis significance test (NHST), and a equivalence test, via two one-sided tests (TOST), were performed with an alpha-level of 0.05. These tested the null hypotheses that true mean difference is equal to 0 (NHST), and true mean difference is more extreme than -62 and 62 (TOST). The equivalence test was significant, t(51) = 2.098, p = 0.02 (mean difference = -5.06 90% C.I.[-50.5, 40.391]; Hedges's g(rm) = -0.028 90% C.I.[-0.253, 0.197]). At the desired error rate, it can be stated that the true mean difference is between -62 and 62."
Code
plot(res1a, type = "cd", ci_shades = c(.9,.95))

Code
t.test(mean_of_3_rounds ~ agent, 
       paired = TRUE, alternative = "greater",
       data = subset_robots_TOST, conf.level = 0.90)

    Paired t-test

data:  mean_of_3_rounds by agent
t = 0.18663, df = 51, p-value = 0.4263
alternative hypothesis: true mean difference is greater than 0
90 percent confidence interval:
 -30.16459       Inf
sample estimates:
mean difference 
       5.063856 
Code
#   Paired t-test
# data:  mean_of_3_rounds by agent
# t = 0.18663, df = 51, p-value = 0.4263
# alternative hypothesis: true mean difference is greater than 0
# 95 percent confidence interval:
#  -40.39126       Inf
# 90 percent confidence interval:
# -30.16459       Inf
# sample estimates:
# mean difference 
#        5.063856 
t.test(mean_of_3_rounds ~ agent, 
       paired = TRUE, alternative = "less",
       data = subset_robots_TOST, conf.level = 0.90)

    Paired t-test

data:  mean_of_3_rounds by agent
t = 0.18663, df = 51, p-value = 0.5737
alternative hypothesis: true mean difference is less than 0
90 percent confidence interval:
    -Inf 40.2923
sample estimates:
mean difference 
       5.063856 
Code
#   Paired t-test
# data:  mean_of_3_rounds by agent
# t = 0.18663, df = 51, p-value = 0.5737
# alternative hypothesis: true mean difference is less than 0
# 95 percent confidence interval:
#      -Inf 50.51898
# 90 percent confidence interval:
#    -Inf 40.2923
# sample estimates:
# mean difference 
#        5.063856 

# Paired t-test
# 
# The equivalence test was significant, t(51) = 2.1, p = 0.02
# The null hypothesis test was non-significant, t(51) = -0.187p = 0.85
# NHST: don't reject null significance hypothesis that the effect is equal to zero 
# TOST: reject null equivalence hypothesis
#
# t df p.value
# t-test    -0.1866325  51  0.853   
# TOST Lower    2.0984274   51  0.020   
# TOST Upper    -2.4716923  51  0.008
# 
# Estimate SE C.I.
# Raw   -5.06385601 27.1327687  [-50.519, 40.3913]   90% confint
# Hedges's g(z) -0.02549847 0.1386976   [-0.2501, 0.1994]    90% confint


subset_robots_TOST$mean_of_3_rounds <- as.numeric(subset_robots_TOST$mean_of_3_rounds)
leveneTest(mean_of_3_rounds ~ agent, 
           data = subset_robots_TOST)
Levene's Test for Homogeneity of Variance (center = median)
       Df F value Pr(>F)
group   1  0.3205 0.5725
      102               
Code
# Levene's Test for Homogeneity of Variance (center = median)
#        Df F value Pr(>F)
# group   1  0.2562 0.6138
#       102               


subset_humanlike_TOST <- subset_bio_error |> filter(agent != "Robotic Arm")
leveneTest(mean_of_3_rounds ~ agent, 
           data = subset_humanlike_TOST)
Levene's Test for Homogeneity of Variance (center = median)
       Df F value Pr(>F)
group   1  0.9894 0.3222
      102               
Code
#        Df F value Pr(>F)
# group   1  0.9894 0.3222
#       102       
# mean, sd humanlike 
mean_and_SD_humans <- subset_humanlike_TOST |> group_by(agent) |> 
  summarise(mean = mean(mean_of_3_rounds, na.rm=T), sd = sd(mean_of_3_rounds, na.rm=T))

res1b = t_TOST(x = subset(subset_humanlike_TOST, agent=="Humanoid")$mean_of_3_rounds,
               y = subset(subset_humanlike_TOST, agent=="Human")$mean_of_3_rounds, paired = TRUE,
               eqb = 68)
# current effect size 0.742795
print(res1b)

Paired t-test

The equivalence test was non-significant, t(51) = 2.67, p = 0.99
The null hypothesis test was significant, t(51) = 5.06p < 0.01
NHST: reject null significance hypothesis that the effect is equal to zero 
TOST: don't reject null equivalence hypothesis

TOST Results 
               t df p.value
t-test     5.060 51 < 0.001
TOST Lower 7.454 51 < 0.001
TOST Upper 2.666 51   0.995

Effect Sizes 
              Estimate      SE                C.I. Conf. Level
Raw           143.7374 28.4064 [96.1486, 191.3262]         0.9
Hedges's g(z)   0.6913  0.1544    [0.4371, 0.9396]         0.9
Note: SMD confidence intervals are an approximation. See vignette("SMD_calcs").
Code
describe(res1b)
[1] "Using the Paired t-test, a null hypothesis significance test (NHST), and a equivalence test, via two one-sided tests (TOST), were performed with an alpha-level of 0.05. These tested the null hypotheses that true mean difference is equal to 0 (NHST), and true mean difference is more extreme than -68 and 68 (TOST). The equivalence test was not significant (p = 0.995). The NHST was significant, t(51) = 5.06, p < 0.001 (mean difference = 143.737 90% C.I.[96.149, 191.326]; Hedges's g(z) = 0.691 90% C.I.[0.437, 0.94]). At the desired error rate, it can be stated that the true mean difference is not equal to 0 (i.e., no equivalence)."
Code
cohens_d(mean_of_3_rounds~ agent,
  paired = TRUE,
  data = subset_humanlike_TOST
)
Cohen's d |         95% CI
--------------------------
-0.70     | [-1.00, -0.40]
Code
# Paired t-test
# 
# The equivalence test was non-significant, t(51) = 2.67, p = 0.99
# The null hypothesis test was significant, t(51) = 5.06p < 0.01
# NHST: reject null significance hypothesis that the effect is equal to zero 
# TOST: don't reject null equivalence hypothesis
# 
# t df p.value
# t-test    5.060036    51  < 0.001
# TOST Lower    7.453862    51  < 0.001
# TOST Upper    2.666209    51  0.995
# 
# Estimate SE# SE C.I. Conf. Level
# Raw             143.7374260   28.4064056 [96.1486, 191.3262]  0.9
# Hedges's g(z) 0.6913222     0.1543574     [0.4371, 0.9396]    0.9

ANOVA for nonbio

Code
subset_nonbio_error <- reactionTime |>filter(outcome_type == "Error") |>
  filter(motion_type == "Nonbiological") |> select(-stimulus)

m_sd_nonbio_error <- subset_nonbio_error |> summarise(
  mean = mean(mean_of_3_rounds, na.rm = T),
  median = median(mean_of_3_rounds, na.rm = T), 
  sd = sd(mean_of_3_rounds, na.rm = T)
)
moments::skewness(subset_nonbio_error$mean_of_3_rounds, na.rm = T)
[1] 0.5215634
Code
moments::kurtosis(subset_nonbio_error$mean_of_3_rounds, na.rm = T)
[1] 2.730025
Code
mod_nonbio <- aov_ez(id = "participant", dv = "mean_of_3_rounds", 
              within = "agent", es = "pes", 
              type = 3, include_aov = TRUE,
              data = subset_nonbio_error)

anova(mod_nonbio)
Anova Table (Type 3 tests)

Response: mean_of_3_rounds
      num Df den Df   MSE      F     ges   Pr(>F)    
agent 1.9569 99.802 19513 48.271 0.33742 3.39e-15 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
# Anova Table (Type 3 tests)
# 
# Response: mean_of_3_rounds
#       num Df den Df   MSE      F     ges   Pr(>F)    
# agent 1.9569 99.802 19513 48.271 0.33742 3.39e-15 ***
subset_humanlike_nonbio <- subset_nonbio_error |> filter(agent != "Robotic Arm")

More equivalence tests

Code
#between robots
subset_robots_nonbio <- subset_nonbio_error |> filter(agent != "Human")

# mean and SD of subset_robots
mean_and_SD_robots_nonbio <- subset_robots_nonbio |> group_by(agent) |> 
  summarise(mean = mean(mean_of_3_rounds, na.rm=T), sd = sd(mean_of_3_rounds, na.rm=T))
# actual effect size d= 0.748104

res2a = t_TOST(x = subset(subset_robots_nonbio, agent=="Robotic Arm")$mean_of_3_rounds,
               y = subset(subset_robots_nonbio, agent=="Humanoid")$mean_of_3_rounds, paired = TRUE,
               eqb = 51.7)
print(res2a)

Paired t-test

The equivalence test was non-significant, t(51) = 2.05, p = 0.98
The null hypothesis test was significant, t(51) = 3.857p < 0.01
NHST: reject null significance hypothesis that the effect is equal to zero 
TOST: don't reject null equivalence hypothesis

TOST Results 
               t df p.value
t-test     3.857 51 < 0.001
TOST Lower 5.669 51 < 0.001
TOST Upper 2.046 51   0.977

Effect Sizes 
              Estimate     SE                C.I. Conf. Level
Raw            110.115 28.546 [62.2923, 157.9378]         0.9
Hedges's g(z)    0.527  0.148    [0.2841, 0.7651]         0.9
Note: SMD confidence intervals are an approximation. See vignette("SMD_calcs").
Code
describe(res2a)
[1] "Using the Paired t-test, a null hypothesis significance test (NHST), and a equivalence test, via two one-sided tests (TOST), were performed with an alpha-level of 0.05. These tested the null hypotheses that true mean difference is equal to 0 (NHST), and true mean difference is more extreme than -51.7 and 51.7 (TOST). The equivalence test was not significant (p = 0.977). The NHST was significant, t(51) = 3.857, p < 0.001 (mean difference = 110.115 90% C.I.[62.292, 157.938]; Hedges's g(z) = 0.527 90% C.I.[0.284, 0.765]). At the desired error rate, it can be stated that the true mean difference is not equal to 0 (i.e., no equivalence)."
Code
t.test(mean_of_3_rounds ~ agent, 
       paired = TRUE, alternative = "two.sided",
       data = subset_humanlike_nonbio, conf.level = 0.90)

    Paired t-test

data:  mean_of_3_rounds by agent
t = 10.554, df = 51, p-value = 1.989e-14
alternative hypothesis: true mean difference is not equal to 0
90 percent confidence interval:
 222.9332 307.0648
sample estimates:
mean difference 
        264.999 
Code
robots_d <- effectsize::cohens_d(mean_of_3_rounds ~ agent, 
                                 paired = TRUE, 
                                 data = subset_robots_nonbio)
# data:  mean_of_3_rounds by agent
# t = -3.8575, df = 51, p-value = 0.000323
# alternative hypothesis: true mean difference is not equal to 0
# 90 percent confidence interval:
#  -157.93782  -62.29229
# sample estimates:
# mean difference 
#       -110.1151 

# data:  mean_of_3_rounds by agent
# t = 10.554, df = 51, p-value = 1.989e-14
# alternative hypothesis: true mean difference is not equal to 0
# 90 percent confidence interval:
#  222.9332 307.0648
# sample estimates:
# mean difference 
#         264.999 
subset_robots_nonbio$mean_of_3_rounds <- as.numeric(subset_robots_nonbio$mean_of_3_rounds)
leveneTest(mean_of_3_rounds ~ agent, 
           data = subset_robots_nonbio)
Levene's Test for Homogeneity of Variance (center = median)
       Df F value  Pr(>F)   
group   1  9.3556 0.00284 **
      102                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
# Levene's Test for Homogeneity of Variance (center = median)
#        Df F value  Pr(>F)   
# group   1  9.3556 0.00284 **
#       102                   

power_t_TOST(
  n = 52,
  delta = 5.06,
  eqb = 62,
  alpha = .05,
  type = "paired"
)

     Paired TOST power calculation 

          power = 1
           beta = 0
          alpha = 0.05
              n = 52
          delta = 5.06
             sd = 1
         bounds = -62, 62

NOTE: n is number of *pairs*
Code
# mean, sd humanlike 
mean_and_SD_nonbio_humans <- subset_humanlike_nonbio |> group_by(agent) |> 
  summarise(mean = mean(mean_of_3_rounds, na.rm=T), sd = sd(mean_of_3_rounds, na.rm=T))
# actual effect size d = 1.868161. Super large.

res2b = t_TOST(x = subset(subset_humanlike_nonbio, agent=="Humanoid")$mean_of_3_rounds,
               y = subset(subset_humanlike_nonbio, agent=="Human")$mean_of_3_rounds, paired = TRUE, 
               eqb = 50)
print(res2b)

Paired t-test

The equivalence test was non-significant, t(51) = -8.6, p = 1
The null hypothesis test was significant, t(51) = -10.6p < 0.01
NHST: reject null significance hypothesis that the effect is equal to zero 
TOST: don't reject null equivalence hypothesis

TOST Results 
                 t df p.value
t-test     -10.554 51 < 0.001
TOST Lower  -8.562 51       1
TOST Upper -12.545 51 < 0.001

Effect Sizes 
              Estimate     SE                   C.I. Conf. Level
Raw           -264.999 25.110 [-307.0648, -222.9332]         0.9
Hedges's g(z)   -1.442  0.198     [-1.7616, -1.1123]         0.9
Note: SMD confidence intervals are an approximation. See vignette("SMD_calcs").
Code
# Welch Two Sample t-test
# 
# The equivalence test was non-significant, t(89.5) = -7.7, p = 1
# The null hypothesis test was significant, t(89.5) = -9.53p < 0.01
# NHST: reject null significance hypothesis that the effect is equal to zero 
# TOST: don't reject null equivalence hypothesis

leveneTest(mean_of_3_rounds ~ agent, 
           data = subset_humanlike_nonbio)
Levene's Test for Homogeneity of Variance (center = median)
       Df F value  Pr(>F)   
group   1  9.4417 0.00272 **
      102                   
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Code
#        Df F value  Pr(>F)   
# group   1  9.4417 0.00272 **
#       102           

humanoid_resid <- subset_humanlike_nonbio |> 
  filter(agent == "Humanoid") |> 
  mutate(resid = mean_of_3_rounds - mean(mean_of_3_rounds))
#qqPlot(humanoid_resid$resid)
Code
bio_human_resid <- plotting |> 
  filter(motion_type == "Biological") |> filter(agent == "Human") |> filter(outcome_type == "Error") |> mutate(resid = mean_of_3_rounds - mean(mean_of_3_rounds, na.rm = T))

qqPlot(bio_human_resid$resid)

[1]  2 11
Code
bio_humanoid_resid <- plotting |> 
  filter(motion_type == "Biological") |> filter(agent == "Humanoid") |> filter(outcome_type == "Error") |> mutate(resid = mean_of_3_rounds - mean(mean_of_3_rounds, na.rm = T))

qqPlot(bio_humanoid_resid$resid)

[1] 7 8
Code
nonbio_human_resid <- plotting |> 
  filter(motion_type == "Nonbiological") |> filter(agent == "Human") |> filter(outcome_type == "Error") |> mutate(resid = mean_of_3_rounds - mean(mean_of_3_rounds, na.rm = T))

qqPlot(nonbio_human_resid$resid)

[1] 16 13